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= 0 . 0 0 2 0 ( 1 4 )  and u 3 = - 0 . 0 0 0 6 ( 1 5 ) ,  (zI/tT)max<_ 
0.080. The angle between the dipolar axis and the [ 100] 
direction is less than in phase I, being 3 o. The centre of 
gravity stays near the crystalline axis and its distance to 
the origin has not changed. The residual factors are 
R = 0 . 0 6 8  and wR = 0 . 0 4 2  (instead of 0.075 and 
0.102 respectively for the continuous cylindrical 
rotation model). 
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Abstract  

It is demonstrated how puckering parameters, cal- 
culated from atomic coordinates, map out the various 
symmetrical conformations of eight-membered rings 
onto the surface, defined by a set of tori on a unit 
sphere. The ten classical forms occur on right toroidal 
surfaces located at positions, fixed by characteristic 
values of a polar angle, on the sphere. The mapping 
represents the geometrical interpretation of five param- 
eters in three-dimensional space. The surface projects 
as a two-dimensional presentation that can be inter- 
preted directly. Some of the tori have minor radii of 
zero and contract into circles which represent simple 
pseudorotational cycles. When the major radius is zero 
a great circle, perpendicular to the equator of the unit 
sphere, is generated. A logical nomenclature to distin- 
guish all settings of the possible conformations is 
proposed. There is one-to-one correspondence with all 
pseudorotational and interconversion pathways deter- 
mined before by independent methods. 

0108-7681/8 8/060663-09503.00 

Introduct ion  

The purpose of this work is to establish a direct 
procedure to obtain a consistent specification of the 
conformation of eight-membered cyclic fragments from 
crystallographic or Cartesian atomic coordinates. The 
conformation is to be specified in terms of a limited 
number of possible symmetrical forms, not necessarily 
the low-energy forms. External steric factors can 
conceivably freeze any flexible unit into a transitional 
conformation not normally accessible to the isolated 
entity. An identification scheme should therefore 
include all symmetrical forms, irrespective of steric 
strain. 

The possible symmetry elements with respect to the 
mean plane through a puckered eight-membered ring 
include vertical axes and planes, and horizontal twofold 
axes. Possible vertical axes are C 4, S 4 and C 2. The full 
symmetry of possible forms should be consistent with 
the condition of chemical viability, to exclude arrange- 
ments with severely interpenetrating non-bonded atoms 

© 1988 International Union of Crystallography 



664 MAPPING THE CONFORMATION OF EIGHT-MEMBERED RINGS 

Table 1. Ten symmetrical conformations of eight-membered rings, with the unique endocyclic torsion angles 
specified in clockwise sequence, starting from the left (or upper left) by reference to the conformational diagram, as 
defined by mirror planes or axes in the molecular plane; where appropriate, the nomenclature refers to a sequence 

of subunits with chair and boat-like conformations 

Ring Symbol  Symmetry  Conformation Torsion angles (o) 
(i) Crown Cr D4a _'~...~-~../+ 87.5 

(ii) S a d d l e  S S 4 _ + + _ 70.0, 30.0 -q .q .  - 

( i i i )  Boat-boat BB D2a --_+ + [ + + 52.5 

( iv)  B o a t  B D2a 0 7 3 . 5  

o q- l¥  o _ 

(v) Twist-chair--chair TCC D z 

(vi) Chair-chair CC Czv 

+ 

q- 

+-[+ 
- - +  - - +  

56.2 , -82.4 ,114.6  

66.0, -105.2  

(vii) Chair C C2h 

(viii) Twist-chair TC Czh 

(ix) Twist-boat-chair TBC C2 

0 119.9,--76.2 

37.3, -109.3 

88.0, -93.2,  51.9, 44.8, - I  15.6 

(x) Boat-chair BC C s + + - -  + 65-0,44.7,-102.2,  65.0 
- -  - -  q -  - -  

and implausible bond angles. Ten viable forms and their 
point groups are listed, roughly in order of decreasing 
symmetry, in Table 1. 

Puckering modes, reflecting atomic displacements 
from the mean molecular plane, are commonly defined 
in terms of a 2zt phase cycle which includes inversion. 
Equivalent forms of eight-membered rings in pseudo- 
rotational relationship are therefore separated by phase 
intervals of re/8. Since transitional forms occur at 
intermediate positions, symmetrical conformations 
alternate at intervals of zc/16. This condition, rather 
than minimum energy, was preferred to fix the atomic 
coordinates of reference conformations at phase angles 
of nrc/I6. The final coordinates listed in Table 2 were 
derived by modification of the internal coordinates 
given by Hendrickson (1964, 1967), using constant 
bond lengths of 1.54 A in the program SHELX76 
(Sheldrick, 1978). OR TEP plots of these canonical 
forms are shown in Fig. 1. 

The initial definition of $4 configurations in terms of 
the coordinates proposed by Hendrickson (1967) had 
to be modified in order to repeat at phase intervals of 
zr/16. As eventually defined the strain energies of the $4, 

B and BB conformations were calculated, using the 
molecular-mechanics program and hydrocarbon force 
field due to Boyd (1968), as 26.0, 25.0 and 
18.0 kJ mo1-1, respectively. These appear to be closer 
to the expected ratios than the relative strain energies, 
calculated by Hendrickson (1967) as 0.9:10.3:1.4. The 
conformation, defined by the torsion angles oo~ = 
--co 3 = 095 = --097 = 70 ° and o92 = -co 4 = o96 = -098 = 
30 °, is concluded to be the better description of the $4 
type. 

The mapping of different conformations was 
achieved in terms of puckering parameters (Cremer & 
Pople, 1975) as described before for six- (Boeyens, 
1978) and seven-membered rings (Boessenkool & 
Boeyens, 1980) and reviewed (Boeyens & Dobson, 
1987) for medium-sized rings. 

Method of study 

A puckering analysis of each conformation was 
performed by computing the appropriate amplitudes 
and angles of pucker, consistent with the scheme of 
Cremer & Pople (1975), and based on the Cartesian 
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Table 2. Coordinates o f  the conformations o f  eight- 
membered rings 

x y z x y z 
BC T C C  

--0.6713 --0.9829 -0 .9770  --0-6747 0.5813 1.2564 
-0 .4597  -0 .7450  -2 -4950  -0 .8174  --0.3811 2-4643 

0.9944 --0.9017 -3 .0115  0.5115 --1.0022 2.9680 
1.7698 -2 .1413  --2.4940 0.9953 --2.2455 2.1770 
2.7963 -1 .8771 -1 .3617  2.3227 -2 .0781 1.3924 
2. 2336 - 1. 3927 0.0000 2. 2092 - 1.4044 0.0000 
1.5510 0.0000 0.0000 1.5510 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

TBC T C  
-0 .7283  -0 .9468  1.1252 -0 .6842  0.4475 -1 .3234  
-1 .0904  -2 .4000  0.7218 0.0174 0.0141 - 2 . 6 3 7 0  

0.0198 -3 .4618  0.9357 0.6549 -1 .3998  -2 .6329  
0.9348 -3 .7439  -0 .2884  2.2059 -1 .3925  -2 .6305  
1.6286 -2 .4222  -0 .9898  2.8859 -1 .8497  -1 .3136  
2.2336 -1 .3927  0.0000 2.1846 - ! . 4 1 5 7  0.0000 
1.5510 0.0000 0.0000 1.5510 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0-0000 

S C 
-0 .7359  -0-5228 -1 .4086  -0 .7038  -1 .3887  - 0 . 0 0 7 0  

0-0547 -0 .3281 -2 .7287  -0-6974 -2 .1260  -1 .3715  
1.3589 -1 .1447  -2-9236 0-0105 -3 -5060  -1 .3676  
!.4310 -2 .5317  -2 .2332  1-5615 -3 .5018  -1 .3639  
!.5374 -2 -5704  -0-6863 2.2619 -2 .1179  -1 .3645  
2.2578 -1 .3806  0.0000 2.2578 -1 .3806  0.0000 
1.5510 0.0000 0-0000 1.5510 0.0000 0.0000 
0.0000 0.0000 0.0000 0-0000 0.0000 0.0000 

Crown BB 
-0 .6814  -0 .0694  i .4034 -0 -7320  -0 .8529  - 1 . 0 7 7 0  
-0 .9185  -1 .4907  1.9774 -0 -3620  -0 .6310  - 2 . 5 6 6 0  

0.2542 -2 .1004  2.7890 1.1290 - 0 . 7 1 3 0  - 2 . 9 8 6 0  
1.3171 -2 .8771 1-9690 1.9380 -1 .9680  -2 -5660  
2-4818 -2 .0312  1.3915 1-913 - 2 . 4 1 0 0  - 1 . 0 7 9 0  
2.2336 -1 .3927  0-0000 2.290 - 1 . 3 6 1 0  0.0000 
1.55 l0 0.0000 0-0000 1.5540 0-0040 0.0040 
0.0000 0.0000 0-0000 0.0030 -0 .0030  - 0 . 0 0 7 0  

CC B 
-0 .6577  0.3606 1-3650 -0 .7298  -0-3984 1-3160 
-0 .4131 -0 .6617  2.5055 0-1400 -0-7586 2.5485 

1.0610 -0 .7822  2.9727 0.8740 -2 .1250  2.5474 
1.7964 -2 .0627  2.4982 0.6934 -3-0476 1.3138 
2.8219 -1 .8441 1.3553 1.4194 -2 .6572  0.0000 
2.2092 -1-4044 0.0000 2.2818 -1 .3681 0.0000 
1-5510 0-0000 0.0000 1.5510 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

coordinates of Table 2. In summary, the conformation 
of an n-membered ring is uniquely defined by its n - 3  
puckering parameters. The n atoms in a puckered ring 
are specified by Cartesian coordinates (xj, yj, z )  or 
position vectors R i, with the origin chosen at the 

t /  

geometrical centre, such that ~ R j - - 0 ,  with the mean 
j = l  

plane defined for the Y zj = 0, and the two additional 
conditions to avoid trivial rotation, 

~zjcos2~z(j-- 1)/n = 0 

Y zjsin2n(j-- 1)/n = O. 

Puckering coordinates of equivalent forms, related by 
pseudorotation, were obtained by consistent rotation of 
the atom numbers and inversion of the zj puckering 
coordinates of each ring. 

The standard puckering analysis yields three am- 
plitudes (q2, q3, q4) and two phase angles (~02, ~03). These 
parameters can map a conformation onto a surface 
defined by five independent variables. For even- 

membered rings the puckering coordinates are defined 
by 

qmCOStp m = V/(2 /n)Yz jcos  { 2rcm(j - 1)/n} 

qmsin~o m = - -V/(2/n)~,z  flin {2z~m(j- 1)/n }, 

where m = 2,3 . . . (n/2-1) ,  qm > 0, 0 < tpm < 2n and 
qn/2 = 1/v / (n)~(  - 1)Jzj, which may have either sign. 

In principal, it is possible to map the five parameters 
in two dimensions by first reducing the number of 
amplitudes through the introduction of a third angular 
variable, 0 < 0 < n, such that 

cos0 = q4/(Y q2)1/2 = q4/Q, 
m 

as shown in Fig. 2. 

Crown (Cr) 

Twist-chair-chair (Tee) 

Chair-chair (CC) 

Twist-chair (TC) 

Chair (C) Boat-boat (BB) 

Saddle (S) Boat (B) 

Twist-boat-chair (TBC) Boat-chair (BC) 

Fig. 1. O R T E P  plots of the canonical forms. 
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I 

Fig. 2. The polar angle 8. 

T a b l e  3. Characteristic puckering amplitudes (qm) and 
polar angles (0) of the ten idealized symmetrical 

conformations 

Ring q2 (,/k) q3 (/~) q4 ('~) ~) (o) 
CR 0 0 __0.87 0,180 
S 1.63 0 0 90 
BB 1.54 0 0 90 
B 1.64 0 0 90 
TCC 0.46 0 _+0.80 30,150 
CC 0.46 0 _+0- 80 30,150 
C 0 0.96 0 90 
TC 0 0.96 0 90 
TBC 0.67 0.82 0.28 75,105 
BC 1.07 0.61 0.33 75,105 

Fig. 3. The torus defined by q2, q3, 4°2 and 4o 3. 

TBOB  
B B / B / S  

Fig. 4. The three-dimensional surface for simultaneous mapping of 
all possible conformations. 

O= 
30" 

90" 

150"  

Fig. 5. A polar projection showing concentric tori. 

8 0  

Fig. 6. A projection of all the tori with their radial axes along the 
(9 3 ---'-- 0 c i rc le .  

n=O 

T B C  + 

/,- yc: °.\\ , 

)_ )J ) 
I v c e~__ /c+~ / \ " o ~ , _  ,c c i / /  I 

~'Tec- ~ x+ ~ s rac  

BC 

o, 31s 22s, 22s 3~s, o, 

~03(°) 

Fig. 7. The positions of all symmetrical conformations in two- 
dimensional projection. The + superscript refers to forms where O 
is less than 90 ° and the - superscript refers to forms where 0 is 
greater than 90 ° . Y = ( T C C  -+, B), X + =  (CC ±, BB, BC+), 
X- = (CC -+, BB, BC-), Z + = (TC, BC +) and Z-  = (TC, BC-). 
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The puckering amplitudes and derived 0 for the 
symmetrical forms are listed in Table 3. It is noted that 
for qm = 0 the parameter (fin has no meaning. Apart 
from the boat-chair  forms, therefore, all other con- 
formations can be mapped by angular coordinates 
and (f2.3 on the surface of a sphere of radius q2,a. To 
accommodate the exceptional forms would require 
definition of a suitable surface with two extra param- 
eters, centred on the sphere at ~ =  75 and 105 °. This 
defines a torus, as shown in Fig. 3. It is noted that for 
the chair forms (C and TC) the second, major radius of 
the torus contracts to zero and the resulting great circle 
lies on a meridian and not along the equator. 

By analogy with the previous argument, a surface for 
simultaneous mapping of all possible conformations 

can now be constructed. Define an arbitrary unit 
sphere, normalized to Q, with polar angle 0 < 0 _< n. At 
each value of 0, define a torus in terms of the 
parameters q2, q3, (f2 and (f3, so that/9 defines the plane 
through the central track of the associated torus, shown 
in Fig. 4. In this representation the radius q2 has no 
operational meaning and is tied to 0. The radius q3 can 
be chosen for convenience and so as to avoid confusing 
overlap. 

The composite surface can now be viewed in 
projection. A standard polar projection would separate 
the tori at different 0 positions as shown in Fig. 5. 
Alternatively, a projection along the surface of the 
sphere would place all tori at the same position, with 
their radial axes along the (f3 -- 0 circle, shown in Fig. 6. 

@ @ 

- -  l e.  "<?-J / "\. L ~. ®._ @._© @ 
\ \ . /  .j i 

_@_ --.- _@_ .®_ 

1 "2 " - - 3  4 / 

9'0 ~ 9'o 
q~(o) 

Fig. 8. Pseudorotational cycles of the B-BB, CC-TCC and crown forms. The magnitudes of the torsion angles are given uniquely by the 
sequence of signs for the B, BB and crown forms. The bold sides of the TCC symbols indicate a torsion angle of magnitude 56.2 ° about 
that bond. The bold wedges of the CC symbols indicate a torsion angle of 105 o. The point of the wedge lies adjacent to the torsion angle 
of-105 o. The bold side of the S symbol indicates a torsion angle of 70 °. 
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This was found to be the least confusing representa- 
tion. The positions of all symmetrical conformations in 
this mode of projection are shown in Fig. 7. 

The conformations that map onto toroidal surfaces 
are uniquely resolved, but not those appearing along 
limiting circles. Overlap occurs at the positions marked 
X, Y or Z. The coincident forms are in all cases 
uniquely distinguished by different 0 values. The phase 
angle (O3 is measured radially from the zero circle, 
X-Y-S .  

It is of interest to note that the surface described here 
is a combination of the surfaces used in the analysis of 
six- and seven-membered-ring conformations (Boeyens, 
1978; Boessenkool & Boeyens, 1980). Instead of 
mapping conformations onto a sphere as for six- 
membered rings, or onto a torus as for seven-membered 
rings, the conformations of eight-membered rings are 
mapped onto tori which lie at specific polar angles on a 
sphere. 

R e s u l t s  a n d  d i s c u s s i o n  

The interrelationships between all conformational types 
are summarized by Fig. 7, but to appreciate better the 
detailed characteristics of each conformational family 
these should be examined in separate projections. The 
(O2-0 polar projection shown in Fig. 8 shows the 
relationship of the pseudorotational cycles B-BB and 
CC-TCC to each other and to the crown form. The 
saddle forms are interspersed between boat and 
boat-boat forms, but since it has no symmetry element 
in the mean plane it is not formally part of the 
pseudorotational process although physically it repre- 
sents an intermediate form, as illustrated in Fig. 9. The 
TC-C pseudorotational cycle defined by (O3 at 0--  90 ° 
is shown in Fig. 10. The BC-TBC family that maps 
onto the tori at 0 =  75 and 105 ° is projected as a 
function of (O2 and (O3 in Fig. 11. 

The nomenclature introduced by Figs. 9 to 11 is 
based on the integers that specify the angular positions 
of the canonical conformations: (o2=hzff16; (o3= 
kz~/16 and O=hr/16. The latter has only positive 
values, 0 < l <_ 16, but for the (O indices, [h,kl <_ 16. 
Positive values for all indices are obtained by defining 
h , k - - 3 2 -  h,k. Most forms are uniquely distinguished 
by no more than two indices and the complete set of 
conformations is made up of CR(I), S(h), BB(h), B(h), 
TCC(h,I), CC(h,I), C(k), TC(k) TBC(h,k), BC(h,k). 
Enantiomeric forms occur at 

(O~ ----- (O2 + 7C = (o2(h  + 16) 

(O; = (o3(k + 16) 

0' = ~ -  0 = 0 ( 1 6  - l ) .  

The torsion angle at any given bond fluctuates 
gradually from a maximum (positive) value, through 
zero to a minimum (negative) value, along a pseudo- 

rotational pathway. In the BC/TBC cycle however, 
there is no well defined symmetrical form with zero 
torsion angles and these flip, at regular intervals, from 
positive to negative values and back. In the CC/TCC 
cycle, the atoms remain in the same relative position 
with respect to the mean plane and axial substituents 
never take up equatorial positions (Hendrickson, 1967). 
The pseudorotational cycle therefore defines a type of 
breathing mode, where a CC form distorts towards 
TCC without flipping atoms through the mean plane. 

To ensure unique nomenclature for specific con- 
formations an unambiguous numbering scheme is 
required. The simplest scheme (Boeyens, 1978) is to 
number the ring atoms in clockwise progression starting 
from a suitable unique atom, unless a standard 
chemical numbering scheme exists. 

A p p l i c a t i o n  

Eleven eight-membered rings from crystallographic 
studies in the literature were analysed using the 
methods described here. The calculated puckering 
parameters, in each case, were used to map the data 
onto the conformational surface. Calculated 0 param- 
eters were used first to identify the appropriate 
projection, and conformations were then derived by 
matching the relevant phase angles (O2 and/or (O3. 
Calculated puckering amplitudes were used as a final 
cheek on the assignment. The puckering parameters are 
listed in Table 4, in the same sequence as discussed 
below. 

(i) eis-Cyelooetane- 1,5-diol 
(ii) Cyelooetane-1,5-dione (Miller & MePhail, 1979) 

The thermodynamically preferred boat-chair con- 
formation is reported for both rings. This assignment is 
confirmed by the puckering analysis, as shown 
diagrammatically below. 

Cs~C2 
uC3 

C~~C~ C 3 
C 2 

m 

c;-/ff  
-4- 

(iii) Diehloro( 5-methyl- 1-thia- 5-azaeyelooctane)- 
palladium(II) (Hirsehon, Musker, Olmstead & Dallas, 
1981) 

The authors concluded ' T A C t  (the ring) acts as a 
bidentate ligand by coordinating to the palladium atom 
through both nitrogen and sulphur atoms and adopting 
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2 3 

'C)' 24 8 m 
8 5 

7 6 

-t- - -  - -  11 - 

-:0" I 

Fig. 9. Passage of the symmetry elements in the B-BB itinerary. 
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Fig. 10. The T C - C  pseudorotational cycle. 
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Fig. l 1. A projection of the tori at/9 = 75 and 105 ° showing the BC-TBC pseudorotational cycles. 
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a boat-chair conformation'. This is supported by 
puckering analysis. 

q 

conformation between the crown and CC 16 3 forms, at 
O= 15 ° 

N ÷ 

-t- 

(iv) trans-1,4-Dichlorocyclooctane (Egmond & Romers, 
1969) 

The puckering analysis agrees with the 'boat-chair' 
assignment. 

J 

,...O,,.C 3 G~_ ' C8 

LACe 

(v) 1,5-Dithiacyclooctane-3,7-dione bis(ethylene acetal) 
(Olmstead & Musker, 1981) 

It was found that 'the compound must lie on a centre 
of inversion. Molecular models show that there are 
many dissimilar conformations that preserve the centre 
of symmetry'. Puckering analysis indicates the twist- 
chair conformation, TC0. 

C~ ~)C' 

C 

)C 

,C 

(vi) 1,5-Diacetyl-3,7-dinitro- 1,3,5,7-tetraazacyclo- 
octane (Santoro, Choi & Abel, 1975) 

The conformation was described as twist-chair and 
confirmed by the puckering analysis. 

C , ~ C ,  =._ -1- -,+ 

N l t~  C2 

(vii) 6-HMX (Cobbledick & Small, 1974) 

The conformation was described by the observation 
that 'the four carbon atoms of the eight-membered ring 
are coplanar'. The puckering analysis indicates a 

(viii), (ix) cis-cis Cyclooctadiene complexes of CuC1 
and RhCI, respectively (Boeyens, Denner, Orchard, 
Rencken & Rose, 1986) 

It was stated that 'both types of coordination require 
a boat-like conformation of cc-COD. It is interesting to 
note that the boat conformation occurs in the rhodium 
complex and the twist-boat conformation in the copper 
complex'. Puckering analysis substantiates the former 
conclusion and the two independent rings of the 
rhodium complex have enantiomeric boat conforma- 
tions B4 and B 12. The conformation of the ring in the 
copper complex is intermediate between boat and 
saddle forms. 

C2 o ÷ 
+ 

0 .~ 

-o 0 

C7~ C ~C2 o _ 

(x) Ni(DACO)2(CIOa)2.2H20 (Boeyens, Fox & Han- 
cock, 1984) 

It is stated that previous workers 'had found a planar 
eight-membered ring folded along the 1,5-axis. Re- 
interpretation of the X-ray data revealed molecular 
disorder and the above structure, was suggested. This 
conformation is in agreement with other DACO 
complexes...'. Puckering analysis now confirms this as 
a reasonable conformation. 

N 

C~ C1 +";, :~7+ 

',JN2 
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Table 4. Puckering parameters o f  some eight-membered 
rings f rom the literature, according to the atomic 

numbering and compound identification in the text. 

Compound q2 (A) q3 (A) 0(°) ~02 (o) ~0 a (o) 
(i) 1.05 0.58 105 0 1 
(ii) 0.95 0.62 73 358 269 
(iii) 1.05 0.59 75 360 293 
(iv) 1.09 0.57 105 268 313 
(v) 0.0 1.23 90 326 3 
(vi) 0.0 0.86 90 84 86 
(vii) 0.22 0.05 15 178 206 
(viii) 1.30 0.0 83 59 210 
(ix)a ! .49 0.0 90 45 27 
(ix)b 1.51 0.0 88 221 73 

(xi) Bis(1,5-dithiacyclooctane)nickel(II) chloride (Hill 
& Hope, 1974) 

This dithioether ligand is analogous to D A C O  (x). 
The authors stated that 'the ligand molecule assumes a 
boatlike conformation. The disorder features associated 
with C(2) indicate that the ligand adopts both cha i r -  
boat and double-chair  conformations, the C(2) can 
assume two different positions'. The large anisotropic 
vibrations, however, suggest additional disorder and 
reinterpretation of the data by the method of Boeyens, 
Fox & Hancock (1984) may be necessary to establish 
the exact conformation. An approximate puckering 
analysis was calculated from averaged fractional 
coordinates confirming the unlikely conformation 
identified before (BC 16,8,-,CC 16,3). 

the parameter proposed by Miller & McPhail  (1979)to 
quantify deviations from full symmetry. 

Each set of puckering parameters consists of q2, q3, 
~02, 093 and 0, with all angular parameters measured in 
radians. The formula does not provide an absolute 
index which is valid for general forms. It should be used 
only to compare the relative weights of related 
contributing forms, since the elements in the expression 
are not vectorial measures on the hypersurface. It is 
noted that AX, being sensitive to degree of pucker (Aqi), 
is not to be interpreted in terms of conformations only. 

Despite the limitations, AX is a useful guide in the 
description of intermediate forms. Applied to the 
previous examples where intermediate configurations 
were inferred, one calculates deviations for compounds 
(vii), (viii) and (xi) of 

(vii): A(CC) = 0.64, A(CR) = 0.34 

(viii): A(S) = 0.37, A(B) = 0.43 

(xi): A(BC) = 0.44, A(CC) = 0.97. 

This identifies the respective dominant forms as 65% 
CR, 54% S and 69% BC. 

Generous support from the F R D  is gratefully 
acknowledged. We thank Susan Dobson for frequent 
valuable discussions. 

C, + "-_xZ=.7+ 

Conclusion 

Only by rare coincidence could one expect calculated 
puckering parameters to match any of the classical 
symmetrical conformations exactly. In many cases the 
match is close enough to identify a related symmetrical 
type unambiguously, but more often an intermediate 
configuration is indicated. In these important cases it 
would be convenient to represent the actual con- 
formation as a linear combination of canonical forms. 
Alternatively this could be done more simply in terms 
of parameters that measure the deviation of an actual 
form from symmetrical types in the neighbourhood. 
This is conveniently defined as 

Ax= [Y(xi- x~)21 '/2, 
where the xi represent actual puckering parameters and 
x~ are the puckering parameters for the fully sym- 
metrical canonical form, X. This expression is related to 
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